Mucin Secretion Induced by Titanium Dioxide Nanoparticles
نویسندگان
چکیده
Nanoparticle (NP) exposure has been closely associated with the exacerbation and pathophysiology of many respiratory diseases such as Chronic Obstructive Pulmonary Disease (COPD) and asthma. Mucus hypersecretion and accumulation in the airway are major clinical manifestations commonly found in these diseases. Among a broad spectrum of NPs, titanium dioxide (TiO(2)), one of the PM10 components, is widely utilized in the nanoindustry for manufacturing and processing of various commercial products. Although TiO(2) NPs have been shown to induce cellular nanotoxicity and emphysema-like symptoms, whether TiO(2) NPs can directly induce mucus secretion from airway cells is currently unknown. Herein, we showed that TiO(2) NPs (<75 nm) can directly stimulate mucin secretion from human bronchial ChaGo-K1 epithelial cells via a Ca(2+) signaling mediated pathway. The amount of mucin secreted was quantified with enzyme-linked lectin assay (ELLA). The corresponding changes in cytosolic Ca(2+) concentration were monitored with Rhod-2, a fluorescent Ca(2+) dye. We found that TiO(2) NP-evoked mucin secretion was a function of increasing intracellular Ca(2+) concentration resulting from an extracellular Ca(2+) influx via membrane Ca(2+) channels and cytosolic ER Ca(2+) release. The calcium-induced calcium release (CICR) mechanism played a major role in further amplifying the intracellular Ca(2+) signal and in sustaining a cytosolic Ca(2+) increase. This study provides a potential mechanistic link between airborne NPs and the pathoetiology of pulmonary diseases involving mucus hypersecretion.
منابع مشابه
Histopathological Effects of Titanium Dioxide Nanoparticles and The Possible Protective Role of N-Acetylcysteine on The Testes of Male Albino Rats
Objective Titanium dioxide (TiO2) is a white pigment which is used in paints, plastics, etc. It is reported to induce oxidative stress and DNA damage. The N-acetylcysteine (NAC) was used to fight oxidative stress-induced damage in various tissues. The aim of this study was to evaluate the toxic effects of TiO2 nanoparticles by oral administration and the protective role of NAC on testes of a...
متن کاملEvaluation of epigenetic changes of liver tissue induced by oral administration of Titanium dioxide nanoparticles and possible protective role of Nigella Sativa oil, in adult male albino rats
Objective (s): Titanium dioxide nanoparticles (TiO2 NPs) have been recognized as biologically inert material and have been used in a multitude of applications. Nevertheless, the negative impact on the human health is not yet well understood. Aim of the work: The study attempted to evaluate the epigenetic changes of the genome, in the form of DNA methylation in liver tissue samples, resulting fr...
متن کاملEffect of Methanol and Titanium Dioxide Nanoparticles on Phytochemical Properties of Artichoke (Cynara scolymus L.)
Extended Abstract Introduction and Objective: In recent years, studies have focused on the use of new compounds that can be synthesized inside the plant and increase the photosynthetic efficiency of the plant. Some of these compounds include micronutrients and alcohols. Alcohols such as methanol as a carbon source will increase photosynthetic efficiency and improve plant growth parameters. Tit...
متن کاملAssessment the Effect of Concentration and Application Time of Titanium Dioxide Nanoparticles on Biochemical Traits and Seed Yield of Wheat (Triticum aestivum L.)
Nanoparticles of titanium increase cell growth by improvement of photosynthetic and nitrogen metabolism and therefore, caused an increasing in weight of the plant. This re-search was conducted to evaluate seed yield and biochemical traits of bread wheat affected by different levels of titanium dioxide Nanoparticles in Ahvaz region, Khuzestan province, located at southwestern Iran by factorial e...
متن کاملInvestigating the germination characteristics of Chickpea (Cicer arietinum) in response to titanium dioxide nanoparticles priming and drought stress
Extended Abstract Introduction: Drought stress, as abiotic and multidimensional stress, has severe effects on plant growth. One of the new approaches in the management of drought stress is the use of nanoparticles. Nanoparticles infilterate the seeds and increase nutrient and water uptake and ultimately, improve germination. The present research was conducted to evaluate the effects of titaniu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011